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Motivation and Background
Landau-Siegel Zeros

Dirichlet (1837) introduced characters χ(modD) to prove there are infinitely
many primes p ≡ a (modD), (a,D) = 1. One key step in the proof is to show
that L(1, χ) ̸= 0 for each non-principal character χ(modD).

Fairly easy to show that L(1, χ) ̸= 0 if χ is complex (so that χ̄ ̸= χ ), but the
non-vanishing of L(1, χ) for real characters χ is more subtle.

To this end, Dirichlet developed his class number formula

L (1, χD) =
πh(−D)√

D
, D > 4.
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Motivation and Background
Landau-Siegel Zeros

Class number formula relates special value of L-function to class number of
Q(

√
−D).

Class number h(−D) is order of a finite group, hence is a positive integer, so

L (1, χD) ≫ D−1/2.

with effective constant.

For some applications, lower bound L(1, χ) ≫ D−1/2 is not strong enough.
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Motivation and Background
Landau-Siegel Zeros

Assuming GRH:

log logD ≫ L(1, χ) ≫ 1

log logD
.

Unconditionally, can show L(1, χ) ≪ logD, but lower bounds are more
difficult to obtain.

Not able to rule out a real zero β of L(s, χ) with β close to s = 1. Such a
real zero β is a Landau-Siegel zero.
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Motivation and Background
Landau-Siegel Zeros

Classical zero-free region shows L(σ + it, χ) has at most one real zero β in
region

σ ≥ 1− c

log(q(2 + |t|))
.

We say χ is an exceptional character, or that χ has a Landau-Siegel zero, if
L(β, χ) = 0 for some β ≥ 1− c/ log q.

We do not make constant c > 0 explicit, but it is fixed and effective.

Landau showed that exceptional characters, if they exist, appear only rarely.
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Motivation and Background
Landau-Siegel Zeros

Hecke showed that no real zero in classical zero-free region implies

L(1, χ) ≫ 1

logD

with effective implied constant.

In such a situation, this yields a respectable bound

h(−D) ≫
√
D

logD
.

By Hecke’s result it follows that L(1, χ) = o
(
(logD)−1

)
=⇒ L(s, χ) has a

Landau-Siegel zero.
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Motivation and Background
Landau-Siegel Zeros

One can obtain stronger lower bounds on L(1, χ).

For instance, Landau (1935) showed

L(1, χ) ≫ε
1

D3/8+ε
.

and Siegel (1935) improved this to

L(1, χ) ≫ε
1

Dε
.

.

Unfortunately, the proofs, in principle, doesn’t allow for a determination of
the constant in terms of ε.

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 8 / 21



Motivation and Background
Landau-Siegel Zeros

One can obtain stronger lower bounds on L(1, χ).

For instance, Landau (1935) showed

L(1, χ) ≫ε
1

D3/8+ε
.

and Siegel (1935) improved this to

L(1, χ) ≫ε
1

Dε
.

.

Unfortunately, the proofs, in principle, doesn’t allow for a determination of
the constant in terms of ε.

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 8 / 21



Motivation and Background
Landau-Siegel Zeros

One can obtain stronger lower bounds on L(1, χ).

For instance, Landau (1935) showed

L(1, χ) ≫ε
1

D3/8+ε
.

and Siegel (1935) improved this to

L(1, χ) ≫ε
1

Dε
.

.

Unfortunately, the proofs, in principle, doesn’t allow for a determination of
the constant in terms of ε.

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 8 / 21



Consequences of Landau-Siegel Zeros
Linnik’s Theorem

Linnik’s theorem: There exists an absolute constant L > 0 such that for any
(a,D) = 1, there exists p ≡ a (modD) with p ≪ DL.

Current record is L = 5, due to Xylouris (2011).

Assuming strong Landau-Siegel zero (i.e. L(1, χ) very small),
Friedlander-Iwaniec (2003) have shown in certain ranges that L < 2− 1

59 .

GRH gives L < 2 + ε.
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Consequences of Landau-Siegel Zeros
Some Illusory Results

This is not an isolated phenomenon. One can prove many strong results
assuming the existence of a Landau-Siegel zero.

However, since we do not believe Landau-Siegel zeros exist, we think of these
results as being “illusory”.

They look impressive, but they lose content if such zeros are finally
eliminated.

Why prove illusory results?
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Consequences of Landau-Siegel Zeros
Some Illusory Results

Some results require considering separately the case where a Landau-Siegel
zero exists, and the case where it does not, for e.g., Linnik’s Theorem.

By exploring this presumably illusory “Landau-Siegel zero universe” more
extensively, we may eventually be able to hit upon a contradiction, and thus
finally resolve the notorious problem of whether a Landau-Siegel zeroes exist.

It may end up that the Landau-Siegel zero universe is indicative of some other
alternate, exotic form of number theory which is actually self-consistent.

Girolamo Saccheri in his Euclides Vindicatus (1733) essentially discovered
Hyperbolic Geometry, by building around the hypothesis that the angles of a
triangle add up less than 180°.
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Consequences of Landau-Siegel Zeros
Some Illusory Results

There are infinitely many prime pairs p, p + h for any fixed nonzero h
(Heath-Brown, 1983).

Primes in the short interval (x − y , x ] for any y > x1/2−1/58+ε

(Friedlander-Iwaniec, 2004). RH gives y > x1/2+ε.

Infinitely many primes of the form p = a6 + b2 (Friedlander-Iwaniec, 2005).
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Consequences of Landau-Siegel Zeros
Some Illusory Results

Landau-Siegel zeros distort Montgomery’s pair correlation function
(Montgomery; Heath-Brown ). Almost always, distance between zeros of zeta
is at least half of the average spacing Conrey-Iwaniec (2002).

The Hardy-Littlewood Chowla Conjecture (Tao-Teräväinen, 2021): For
0 ≤ k ≤ 2 and ℓ ≥ 0 and any distinct integers h1, . . . , hk , h

′
1, . . . , h

′
ℓ, an

asymptotic formula for∑
n≤x

Λ (n + h1) · · ·Λ (n + hk)λ (n + h′1) · · ·λ (n + h′ℓ) .

.

Assuming the existence of an exceptional character mod D, Čech and
Matomäki showed non-vanishing of L(1/2, χ) for almost all χ(modq), for
any q ∈ [D300,DO(1)]. On GRH one can show 50% of central values are
non-vanishing.
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0 ≤ k ≤ 2 and ℓ ≥ 0 and any distinct integers h1, . . . , hk , h

′
1, . . . , h

′
ℓ, an

asymptotic formula for∑
n≤x

Λ (n + h1) · · ·Λ (n + hk)λ (n + h′1) · · ·λ (n + h′ℓ) .

.

Assuming the existence of an exceptional character mod D, Čech and
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Consequences of Landau-Siegel Zeros
Some Illusory Results

What is the mechanism underlying illusory results?

The key point is that small value of L(1, χ) forces χ(p) = −1 for “most”
primes p.

Heuristic for why this is true:

L(1, χ) =
∏
p

(
1− χ(p)

p

)−1

,

so if LHS is small, we must have χ(p) = −1 for many p on RHS.

This implies µ(n) ≈ χ(n) for squarefree n. This is a powerful piece of
information.
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Refinements of Siegel’s Theorem
Tatuzawa’s Result

Define
S = {χ (modq) : χ primitive and real } .

It follows from a minor modification of Tatuzawa’s refinement of Siegel’s
theorem that for all 0 < ε < 1/2, there exists effectively computable
constants q0 = q0(ε) > 0 such that

#
{
χ ∈ S : q ≥ q0 and L(s, χ) has a real zero in

[
1− q−ε, 1

)}
≤ 1.

Further numerical refinements of Tatuzawa’s result due to Hoffstein, Ji-Lu
and Chen.
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Refinements of Siegel’s Theorem
Conditional Results

Sarnak and Zaharescu improved Tatuzawa’s theorem assuming that if ν ∈ S
and ω is a zero of L(s, ν), then Re(ω) = 1

2 or Im(ω) = 0.

Subject to this hypothesis, it follows from their work that for any ε > 0, there
exists an effectively computable constant q0 = q0(ε) > 0 such that

#
{
χ ∈ S : q ≥ q0 and L(s, χ) has a real zero in

[
1− (log q)−ε

, 1
)}

≤ 1.

In particular, they “exponentiate” the quality of the zero free region at the
cost of a hypothesis that, while assuming the generalized Riemann hypothesis
for the non-real zeros, still permits the existence of Landau-Siegel zeros.
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Refinements of Siegel’s Theorem
Current Work

We prove that the conclusion of Sarnak and Zaharescu holds under a
significantly weaker hypothesis. Fix 0 < δ < 1/2.

Hypothesis (Hδ)

If ν ∈ S, then all the zeros of L(s, ν) in the disk |z − 1| < δ are real.

Theorem (B.-Thorner-Zaharescu)

Fix 0 < δ ≤ 1/2. Assume that Hδ is true. For any ε > 0, there exists an
effectively computable constant q0 = q0(δ, ε) > 0 such that

#
{
χ ∈ S : q ≥ q0 and L(s, χ) has a real zero in

[
1− (log q)−ε

, 1
)}

≤ 1.
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Refinements of Siegel’s Theorem
A Brief sketch of the Proof : Non-Negativity

For q0 = q0(δ, ε) to be optimized, suppose there exists χ1 and χ2 of
conductors q1 ⩾ q0 and q2 ⩾ q0, such that L(s, χ1) and L(s, χ2) have real
zeros β1 and β2 respectively satisfying

β1 ⩾ 1− (log q1)
−ε and β2 ⩾ 1− (log q2)

−ε.

Define F (s) = ζ(s)L (s, χ1) L(s, χ2)L (s, χ1χ2) . For Re(s) > 1,

−F ′

F
(s) =

∑
n≥1

Λ(n) (1 + χ1(n)) (1 + χ2(n))

ns
.

On the other hand, we have the partial fraction expansion

−F ′

F
(s) =

1

s − 1
−

∑
F (ρ)=0

(
1

s − ρ
+

1

ρ

)
+ B.
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Refinements of Siegel’s Theorem
A Brief sketch of the Proof : Non-Negativity

Differentiating (kl − 1) times, we obtain

1

(s − 1)kℓ
−

∑
F (ρ)=0

1

(s − ρ)kℓ

=
1

(kℓ− 1)!

∑
n⩾1

Λ(n) (1 + χ1(n)) (1 + χ2(n)) (log n)
kℓ−1

ns
.

Choose s = 1+ η, for some η > 0 that we will optimize. Using non-negativity
and taking the real part, one has

1

ηkℓ
− Re

∑
F (ρ)=0

1

(1 + η − ρ)kℓ
⩾ 0

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 19 / 21



Refinements of Siegel’s Theorem
A Brief sketch of the Proof : Non-Negativity

Differentiating (kl − 1) times, we obtain

1

(s − 1)kℓ
−

∑
F (ρ)=0

1

(s − ρ)kℓ

=
1

(kℓ− 1)!

∑
n⩾1

Λ(n) (1 + χ1(n)) (1 + χ2(n)) (log n)
kℓ−1

ns
.

Choose s = 1+ η, for some η > 0 that we will optimize. Using non-negativity
and taking the real part, one has

1

ηkℓ
− Re

∑
F (ρ)=0

1

(1 + η − ρ)kℓ
⩾ 0

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 19 / 21



Refinements of Siegel’s Theorem
A Brief sketch of the Proof : Turan’s Power Sum Method

Rearranging, we arrive at

1

ηkℓ
− 1

(1 + η − β1)kℓ
⩾

1

(1 + η − β2)kℓ
+ Re

∑
F (ρ)=0
Im ρ ̸=0

1

(1 + η − ρ)kℓ
. (1)

Hypothesis Hδ says complex zeros of F (s) cannot come very close to
s = 1 + η. So the RHS of (1) is dominated by the real zero β2.

Applying Turan’s Inequality, for some r = O(1), one has

1

ηrℓ
− 1

(1 + η − β1)rℓ
⩾

1

8(1 + η − β2)rℓ
.

By optimizing η and q0 in terms of δ and ε, we arrive at a contradiction.

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 20 / 21



Refinements of Siegel’s Theorem
A Brief sketch of the Proof : Turan’s Power Sum Method

Rearranging, we arrive at

1

ηkℓ
− 1

(1 + η − β1)kℓ
⩾

1

(1 + η − β2)kℓ
+ Re

∑
F (ρ)=0
Im ρ ̸=0

1

(1 + η − ρ)kℓ
. (1)

Hypothesis Hδ says complex zeros of F (s) cannot come very close to
s = 1 + η. So the RHS of (1) is dominated by the real zero β2.

Applying Turan’s Inequality, for some r = O(1), one has

1

ηrℓ
− 1

(1 + η − β1)rℓ
⩾

1

8(1 + η − β2)rℓ
.

By optimizing η and q0 in terms of δ and ε, we arrive at a contradiction.

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 20 / 21



Refinements of Siegel’s Theorem
A Brief sketch of the Proof : Turan’s Power Sum Method

Rearranging, we arrive at

1

ηkℓ
− 1

(1 + η − β1)kℓ
⩾

1

(1 + η − β2)kℓ
+ Re

∑
F (ρ)=0
Im ρ ̸=0

1

(1 + η − ρ)kℓ
. (1)

Hypothesis Hδ says complex zeros of F (s) cannot come very close to
s = 1 + η. So the RHS of (1) is dominated by the real zero β2.

Applying Turan’s Inequality, for some r = O(1), one has

1

ηrℓ
− 1

(1 + η − β1)rℓ
⩾

1

8(1 + η − β2)rℓ
.

By optimizing η and q0 in terms of δ and ε, we arrive at a contradiction.

Debmalya Basak (UIUC) Some Remarks on Landau-Siegel Zeros February 14, 2024 20 / 21



Thank you for your attention!
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